CUDA Backend
The CUDA backend provides high-performance tensor operations on NVIDIA GPUs using the CUDA toolkit. It offers the highest performance for supported operations and integrates well with the broader CUDA ecosystem.
Features
- Peak Performance: Optimized kernels for maximum NVIDIA GPU utilization
- Optimized Kernels: Hardware-accelerated tensor operations
- Memory Optimization: Efficient GPU memory management
- Mature Ecosystem: Integration with existing CUDA libraries
- Production Ready: Battle-tested in production environments
Installation
Prerequisites
CUDA Toolkit: Install NVIDIA CUDA Toolkit 11.0 or later
- Download from NVIDIA Developer
- Ensure
nvcc
is in your PATH - Verify installation:
nvcc --version
Compatible GPU: NVIDIA GPU with compute capability 3.5+
- Check compatibility:
nvidia-smi
- Verify compute capability:
deviceQuery
(CUDA samples)
Cargo Configuration
Enable the CUDA backend:
[dependencies]
tensor_frame = { version = "0.0.1-alpha", features = ["cuda"] }
Build Requirements:
- CUDA Toolkit installed
- NVIDIA GPU drivers
- C++ compiler (MSVC on Windows, GCC/Clang on Linux)
System Requirements
Hardware
- GPU: NVIDIA GPU with compute capability 3.5+
- Memory: Sufficient GPU memory for tensor operations
- PCIe: PCIe 3.0 x16 recommended for optimal memory bandwidth
Software
- CUDA Toolkit: Version 11.0+ (12.0+ recommended)
- Driver: NVIDIA driver supporting your CUDA version
- OS: Linux (preferred), Windows 10+, WSL2
Verified Configurations
GPU Generation | Compute Capability | CUDA Version | Status |
---|---|---|---|
Maxwell (GTX 900) | 5.0, 5.2 | 11.0+ | ✅ Supported |
Pascal (GTX 10x0) | 6.0, 6.1 | 11.0+ | ✅ Fully supported |
Volta (V100) | 7.0 | 11.0+ | ✅ Optimized |
Turing (RTX 20x0) | 7.5 | 11.0+ | ✅ Optimized |
Ampere (RTX 30x0) | 8.0, 8.6 | 11.2+ | ✅ Optimal |
Ada (RTX 40x0) | 8.9 | 12.0+ | ✅ Latest features |
Implementation Details
Storage
CUDA tensors use device memory pointers:
#![allow(unused)] fn main() { pub struct CudaStorage { pub ptr: *mut f32, // Raw CUDA device pointer pub len: usize, // Buffer length in elements } }
Memory Properties:
- Location: GPU global memory (VRAM)
- Layout: Contiguous, row-major layout
- Alignment: 256-byte aligned for optimal coalescing
- Synchronization: Explicit via CUDA streams
Kernel Implementation
Operations use optimized CUDA kernels:
// Element-wise addition kernel
__global__ void add_kernel(const float* a, const float* b, float* c, int n) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < n) {
c[idx] = a[idx] + b[idx];
}
}
Performance Characteristics
Strengths
- Compute Throughput: Maximum FP32/FP16 throughput on NVIDIA hardware
- Memory Bandwidth: Optimal utilization of GPU memory bandwidth
- Kernel Optimization: Hand-tuned kernels for each operation
- Library Integration: Designed for future integration with cuDNN, etc.
Performance Metrics
Example performance on RTX 4090:
Operation | Tensor Size | CPU (32 cores) | CUDA | Speedup |
---|---|---|---|---|
Element-wise Add | 1M elements | 2.1 ms | 0.18 ms | 12x |
Matrix Multiply | 2048x2048 | 450 ms | 8.2 ms | 55x |
Reduction Sum | 16M elements | 15 ms | 0.52 ms | 29x |
Optimization Guidelines
Optimal Use Cases
#![allow(unused)] fn main() { // Large tensor operations let a = Tensor::zeros(vec![4096, 4096])?; let b = Tensor::zeros(vec![4096, 4096])?; let c = (a * b) + 1.0; // Excellent GPU performance // Batch operations for batch in large_dataset { let result = model.forward(batch)?; // Amortizes GPU overhead } // Memory-bound operations let result = ((a * b) + c) / d; // GPU memory bandwidth utilized }
Suboptimal Use Cases
#![allow(unused)] fn main() { // Very small tensors let tiny = Tensor::ones(vec![8, 8])?; // Kernel launch overhead dominates // Frequent host-device transfers let gpu_result = cpu_tensor.to_backend(BackendType::Cuda)?; let back_to_cpu = gpu_result.to_vec()?; // PCIe bandwidth bottleneck // Scalar reductions with immediate use let sum = tensor.sum(None)?.to_vec()?; // Forces synchronization }
Memory Management
Device Memory Allocation
CUDA tensors allocate GPU memory directly:
#![allow(unused)] fn main() { // Allocates 64MB of GPU memory let large_tensor = Tensor::zeros(vec![4096, 4096])? .to_backend(BackendType::Cuda)?; }
Memory Pool Management
The backend uses a memory pool for efficient allocation:
#![allow(unused)] fn main() { // Pool reduces allocation overhead let tensors: Vec<Tensor> = (0..100) .map(|_| Tensor::zeros(vec![1024, 1024])) .collect::<Result<Vec<_>>>()?; }
Memory Transfer Optimization
#![allow(unused)] fn main() { // Efficient: Batch transfers let gpu_tensors = cpu_tensors .into_iter() .map(|t| t.to_backend(BackendType::Cuda)) .collect::<Result<Vec<_>>>()?; // Inefficient: Individual transfers for cpu_tensor in cpu_tensors { let gpu_tensor = cpu_tensor.to_backend(BackendType::Cuda)?; process(gpu_tensor)?; } }
Memory Debugging
Monitor GPU memory usage:
# Check GPU memory
nvidia-smi
# Continuous monitoring
watch -n 1 nvidia-smi
#![allow(unused)] fn main() { // Check available memory let (free, total) = cuda::memory_info()?; println!("GPU memory: {}/{} MB", free / 1024 / 1024, total / 1024 / 1024); // Handle out-of-memory match Tensor::zeros(vec![16384, 16384]).and_then(|t| t.to_backend(BackendType::Cuda)) { Ok(tensor) => println!("Allocated 1GB GPU tensor"), Err(TensorError::BackendError(msg)) if msg.contains("memory") => { eprintln!("GPU OOM, trying smaller allocation"); } Err(e) => eprintln!("CUDA error: {}", e), } }
Error Handling
CUDA operations can fail for various hardware and software reasons:
Runtime Errors
#![allow(unused)] fn main() { use tensor_frame::{Tensor, TensorError}; match tensor_operation() { Ok(result) => process(result), Err(TensorError::BackendError(msg)) => { if msg.contains("out of memory") { // GPU memory exhausted fallback_to_cpu()?; } else if msg.contains("invalid device") { // GPU not available or driver issue retry_with_cpu_backend()?; } else { // Other CUDA error eprintln!("CUDA error: {}", msg); } } } }
Common Error Scenarios
- GPU Out of Memory: Tensor too large for available GPU memory
- Invalid Device: GPU not found or not compatible
- Driver Mismatch: CUDA driver version incompatible
- Kernel Launch Failed: Invalid kernel parameters or GPU fault
- Memory Access Violation: Invalid GPU memory access
Error Recovery
#![allow(unused)] fn main() { // Graceful fallback strategy fn robust_tensor_operation(tensor: Tensor) -> Result<Tensor> { // Try CUDA first if let Ok(cuda_tensor) = tensor.to_backend(BackendType::Cuda) { match cuda_operation(cuda_tensor) { Ok(result) => return Ok(result), Err(TensorError::BackendError(_)) => { // CUDA failed, fall back to CPU eprintln!("CUDA operation failed, falling back to CPU"); } } } // CPU fallback cpu_operation(tensor.to_backend(BackendType::Cpu)?) } }
Debugging and Profiling
CUDA Debugging Tools
NVIDIA Nsight Systems: System-wide performance analysis
nsys profile --stats=true ./your_app
NVIDIA Nsight Compute: Kernel-level profiling
ncu --metrics sm__throughput.avg.pct_of_peak_sustained_elapsed ./your_app
cuda-memcheck: Memory error detection
cuda-memcheck ./your_app
Performance Analysis
#![allow(unused)] fn main() { // GPU timing with CUDA events use std::time::Instant; let start = Instant::now(); let result = gpu_tensor_a.matmul(&gpu_tensor_b)?; // Note: matmul is asynchronous! let _sync = result.to_vec()?; // Force synchronization let elapsed = start.elapsed(); println!("Matrix multiplication took: {:?}", elapsed); }
Memory Leak Detection
#![allow(unused)] fn main() { // Monitor for memory leaks in long-running applications fn check_memory_usage() -> Result<()> { let (free_before, total) = cuda::memory_info()?; // Perform operations { let tensor = Tensor::zeros(vec![1000, 1000])?.to_backend(BackendType::Cuda)?; let result = expensive_operation(tensor)?; } // tensor should be freed here let (free_after, _) = cuda::memory_info()?; if free_after < free_before { eprintln!("Potential memory leak detected!"); eprintln!("Memory delta: {} MB", (free_before - free_after) / 1024 / 1024); } Ok(()) } }
Production Deployment
Docker Configuration
# Use NVIDIA CUDA base image
FROM nvidia/cuda:12.0-devel-ubuntu20.04
# Install Rust
RUN curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- -y
ENV PATH="/root/.cargo/bin:${PATH}"
# Copy and build your application
COPY . /app
WORKDIR /app
RUN cargo build --release --features cuda
# Runtime with CUDA
FROM nvidia/cuda:12.0-runtime-ubuntu20.04
COPY --from=0 /app/target/release/your_app /usr/local/bin/
CMD ["your_app"]
Kubernetes Deployment
apiVersion: v1
kind: Pod
spec:
containers:
- name: tensor-app
image: your-app:latest
resources:
limits:
nvidia.com/gpu: 1
env:
- name: CUDA_VISIBLE_DEVICES
value: "0"
Environment Variables
# Limit GPU memory growth
export CUDA_MEMORY_POOL_TYPE=pool
# Enable GPU timing
export CUDA_LAUNCH_BLOCKING=1
# Select specific GPU
export CUDA_VISIBLE_DEVICES=0
Optimization Best Practices
Memory Access Patterns
#![allow(unused)] fn main() { // Coalesced memory access (efficient) let result = tensor_a + tensor_b; // Sequential element access // Strided access (less efficient) let transposed = tensor.transpose()?; // May require memory reshape }
Kernel Fusion
#![allow(unused)] fn main() { // Fused operations (single kernel launch) let result = ((a * b) + c).relu(); // Ideally fused into one kernel // Separate operations (multiple kernel launches) let temp1 = a * b; let temp2 = temp1 + c; let result = temp2.relu(); // Three separate kernels }
Stream Management
#![allow(unused)] fn main() { // Future: Async operations with CUDA streams // Currently synchronous, but optimizations planned let stream_a = cuda::create_stream()?; let stream_b = cuda::create_stream()?; // Parallel execution on different streams let result_a = tensor_a.sum(None).execute_on(stream_a)?; let result_b = tensor_b.mean(None).execute_on(stream_b)?; }
Integration with CUDA Ecosystem
cuDNN (Future)
Planned integration for neural network operations:
#![allow(unused)] fn main() { // Future: Convolution operations let output = input.conv2d(&kernel, stride, padding)?; }
NCCL (Future)
Multi-GPU communication for distributed computing:
#![allow(unused)] fn main() { // Future: Multi-GPU operations let distributed_result = tensor.all_reduce_sum()?; }